Constructing operator basis in supersymmetry: a Hilbert series approach

نویسندگان

چکیده

In this paper we introduce a Hilbert series approach to build the operator basis for N = 1 supersymmetry theory with chiral superfields. We give explicitly form of corrections that remove redundancies due equations motion and integration by parts. addition, derive maps between correction spaces. This technique allows us calculate number independent operators involving antichiral superfields arbitrarily high mass dimension. Using method, several illustrative examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator-valued bases on Hilbert spaces

In this paper we develop a natural generalization of Schauder basis theory, we term operator-valued basis or simply ov-basis theory, using operator-algebraic methods. We prove several results for ov-basis concerning duality, orthogonality, biorthogonality and minimality. We prove that the operators of a dual ov-basis are continuous. We also dene the concepts of Bessel, Hilbert ov-basis and obta...

متن کامل

The solutions to some operator equations in Hilbert $C^*$-module

In this paper, we state some results on product of operators with closed ranges and we solve the operator equation $TXS^*-SX^*T^*= A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $TS = 1$. Furthermore, by using some block operator matrix techniques, we nd explicit solution of the operator equation $TXS^*-SX^*T^*= A$.

متن کامل

The solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules

In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.

متن کامل

Operator Preconditioning in Hilbert Space

2010 1 Introduction The numerical solution of linear elliptic partial differential equations consists of two main steps: discretization and iteration, where generally some conjugate gradient method is used for solving the finite element discretization of the problem. However, when for elliptic problems the dis-cretization parameter tends to zero, the required number of iterations for a prescrib...

متن کامل

Reformulating Supersymmetry with a Generalized Dolbeault Operator

The conditions for N = 1 supersymmetry in type II supergravity have been previously reformulated in terms of generalized complex geometry. We improve that reformulation so as to completely eliminate the remaining explicit dependence on the metric. Doing so involves a natural generalization of the Dolbeault operator. As an application, we present some general arguments about supersymmetric modul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2023

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep04(2023)097